Providing the latest and most up-to-date research services in the field of biotechnology

Some techniques performed in Histogenotech

With the rapid development of biotechnology, it has become clear that this new technology has the potential to be widely used in various fields of biology and is able to use new tools for use in molecular and cellular biology as well as the production of new materials to identify disease agents.
Due to the urgent need of industries and research centers for the techniques required in this section, Histogenotech research center is proud to provide up-to-date research techniques in this field for the general public, researchers, students and professors. Provide research institutes and centers, industrial centers and specialists active in the fields of health, medicine and medicine, medicine and food, agriculture and natural resources and other interested parties.

Biotechnology Studies Services

In order to test the quality of the samples produced in different parts of Histogenotech research and development unit and also to study the antimicrobial properties of some antibacterial products, the company’s microbiology unit is actively serving in this field. This unit provides the most accurate results in this field by developing a quality control plan, providing the most detailed points and requirements of the Ministry of Health. In addition, the preparation of pure and standard strains of pathogenic bacteria from reputable European companies to benefit from quality control programs and comparison with pathogenic organisms in patient samples, has enabled the collection to provide up-to-date topics for student research. Preparation and use of efficient and diverse antibiotic discs with surveys of bacteriologists and microbiologists, as well as the preparation of all commercial culture media for bacterial detection, has led to a dynamic R&D environment to provide services to production units. Histogenotech Company has been able to conduct various training workshops in this regard in the written inspection and internal audit programs, in order to use the opinions of the laboratory audit team and complete the microbial department programs.
Researchers are looking to discover new antibacterial drugs and antibiotics with different primary sources, according to the World Health Organization (WHO). Fungi are one of the biological organisms that have been highly regarded by researchers at the Histogenotech Research Center due to their high diversity and high growth rate. They are known as a rich source of antibiotics and antioxidants. Therefore, research on the production of antibiotics from fungal sources is underway, and access to a new source of antibacterial could open new horizons in modern medicine. The study of fungi is very important in terms of new compounds. Inocutis levis, for example, is a yellowish-brown fungus that grows on the trunks of living trees. Recent studies have shown that this fungus prevents high blood fats and also has the property of decrease blood sugar and regulating insulin in type 2 diabetes. Since more than 100 animal models have been designed in Histogenotech, studies of infectious and diabetic skin lesions have been used to evaluate the efficacy of antibiotics derived from fungi.
One of the sources of natural products is fungi. These biological organisms, in order to protect themselves against environmental damage caused by bacteria and viruses produce different active ingredients including some natural compounds such as antibiotics such as penicillin and pleuromutilin, cholesterol-lowering drugs such as lovastatin, compactin and immunosuppressing agents like mycophenolic acid and cyclosporin. On the other hand, a wide range of fungi with a variety of carcinogens such as aflatoxins, lethal toxins such as alpha-amanitin, industrial fungicides such as strobilurin, food dyes such as azafilone, hormones such as gibberellin and psychotropic substances such as silosibine have found a special place in the process. At animal department of Histogenotech Company, various types of animal models are being developed, especially in the field of various cancers or diseases of the nervous system. In this regard, the use of fungal compounds such as alpha-amantine in the treatment of liver cancer, the use of silosibin in modeling Alzheimer’s and many other models are studied.
The use of transgenic animals or transgenic plants to increase productivity and produce food products with higher volume and better quality is one of the achievements in the field of biotechnology in the present century. In this way, gene transfer and production of transgenic animals, help us to create animal models for the study of various diseases and can be used as a tool to produce a variety of drugs and recombinant compounds. Due to the key role of biotechnology techniques in the design of modern pharmaceutical products, experts in the field of Histogenotech with free consultation and design studies in the use of viral vectors, tried to create a cell bank of transgenic or transgenic cell lines to be able to science research Basic medical use it. Thus, in the previous activity of these researchers based in cellular and molecular laboratories, microbiology and biotechnology, the use of lentiviruses with different structures designed to manipulate cell lines or to track transplanted cells has been implemented so far. Viral vectors of various forms have been used to transmit genes and produce transgenic animals, including by direct injection of recombinant and gene-carrying viruses into target tissue or treatment of stem cells with recombinant virus, followed by transfer of recombinant cells to Target tissue or treatment of embryonic cells in the early embryonic stages
Perform microbial control tests to control the presence of microorganisms in the samples
In order to test the quality of the samples produced in different parts of Histogenotech research and development unit and also to study the antimicrobial properties of some antibacterial products, the company’s microbiology unit is actively serving in this field. This unit provides the most accurate results in this field by developing a quality control plan, providing the most detailed points and requirements of the Ministry of Health. In addition, the preparation of pure and standard strains of pathogenic bacteria from reputable European companies to benefit from quality control programs and comparison with pathogenic organisms in patient samples, has enabled the collection to provide up-to-date topics for student research. Preparation and use of efficient and diverse antibiotic discs with surveys of bacteriologists and microbiologists, as well as the preparation of all commercial culture media for bacterial detection, has led to a dynamic R&D environment to provide services to production units. Histogenotech Company has been able to conduct various training workshops in this regard in the written inspection and internal audit programs, in order to use the opinions of the laboratory audit team and complete the microbial department programs.
Extraction of antibiotics from fungi
Researchers are looking to discover new antibacterial drugs and antibiotics with different primary sources, according to the World Health Organization (WHO). Fungi are one of the biological organisms that have been highly regarded by researchers at the Histogenotech Research Center due to their high diversity and high growth rate. They are known as a rich source of antibiotics and antioxidants. Therefore, research on the production of antibiotics from fungal sources is underway, and access to a new source of antibacterial could open new horizons in modern medicine. The study of fungi is very important in terms of new compounds. Inocutis levis, for example, is a yellowish-brown fungus that grows on the trunks of living trees. Recent studies have shown that this fungus prevents high blood fats and also has the property of decrease blood sugar and regulating insulin in type 2 diabetes. Since more than 100 animal models have been designed in Histogenotech, studies of infectious and diabetic skin lesions have been used to evaluate the efficacy of antibiotics derived from fungi.
Microorganism detection in samples
جداسازی قارچ های مولد آنتی بیوتیک
Extraction of antibiotics from fungi
vol8no2_Benkee_Isolatn_fig1
Antibiotic production from fungi
Bacterial&viral vectors
Isolation and identification of fungi for antibiotic production
One of the sources of natural products is fungi. These biological organisms, in order to protect themselves against environmental damage caused by bacteria and viruses produce different active ingredients including some natural compounds such as antibiotics such as penicillin and pleuromutilin, cholesterol-lowering drugs such as lovastatin, compactin and immunosuppressing agents like mycophenolic acid and cyclosporin. On the other hand, a wide range of fungi with a variety of carcinogens such as aflatoxins, lethal toxins such as alpha-amanitin, industrial fungicides such as strobilurin, food dyes such as azafilone, hormones such as gibberellin and psychotropic substances such as silosibine have found a special place in the process. At animal department of Histogenotech Company, various types of animal models are being developed, especially in the field of various cancers or diseases of the nervous system. In this regard, the use of fungal compounds such as alpha-amantine in the treatment of liver cancer, the use of silosibin in modeling Alzheimer’s and many other models are studied.
Preparation of bacterial and viral vectors
The use of transgenic animals or transgenic plants to increase productivity and produce food products with higher volume and better quality is one of the achievements in the field of biotechnology in the present century. In this way, gene transfer and production of transgenic animals, help us to create animal models for the study of various diseases and can be used as a tool to produce a variety of drugs and recombinant compounds. Due to the key role of biotechnology techniques in the design of modern pharmaceutical products, experts in the field of Histogenotech with free consultation and design studies in the use of viral vectors, tried to create a cell bank of transgenic or transgenic cell lines to be able to science research Basic medical use it. Thus, in the previous activity of these researchers based in cellular and molecular laboratories, microbiology and biotechnology, the use of lentiviruses with different structures designed to manipulate cell lines or to track transplanted cells has been implemented so far. Viral vectors of various forms have been used to transmit genes and produce transgenic animals, including by direct injection of recombinant and gene-carrying viruses into target tissue or treatment of stem cells with recombinant virus, followed by transfer of recombinant cells to Target tissue or treatment of embryonic cells in the early embryonic stages
You may find the answer to your question

Frequently Asked Questions by Customers

Stem cells are more resistant to changes in the structure of DNA because the body’s main reserves are in the regeneration of damaged or growing tissues. On the other hand, the membrane of cancer cells and stem cells, with some cell pumps, resist the entry of compounds into the cell. However, due to their high ability to repair, these cells are widely used in biotechnology and can be easily manipulated with new techniques and materials.

Purification of proteins or secretions from bacteria and fungi can be done in several different ways. Purification using some salts such as ammonium sulfate, the use of dialysis bags with different pore sizes based on protein molecular weight, chromatographic columns with different methods can also purify secreted proteins based on how they work including Gel-Filtration Chromatography and Ion-Exchange Chromatography, Affinity Chromatography and High-Pressure Liquid Chromatography.

There are several methods for tracking cells in vivo, based on fluorescent dyes using microscopic imaging. These tracers include BrdU (Bromodeoxyuridine), GFP (Green Fluorescent Protein), Hokhest, CM-DiI. Each of these compounds reacts with different parts of the cell and has a different lifespan and amount of color during cell divisions.

Based on the purpose of a study, gene carriers can be selected from viruses with different genomic structures. These carriers include the vectors Retrovirus, Lentivirus, Adeno virus (AV), Adeno-associated virus (AAV), and Herpes. Each of these vectors is licensed for research or clinical use, and only some of them are licensed for therapeutic use.

The production of organs from one species in the body of another species can be done under the name of chimera species. In other words, some organs of the body such as liver, cartilage, some organs such as earlobes have been successfully produced in animals for human use. Researchers hope to meet the human need for organ transplants by producing human tissues in animals.

Due to structural differences in the DNA and organs of prokaryotic and eukaryotic cells, the production of recombinant products from these cells is different. Thus, due to the high rate of proliferation of prokaryotic cells and the lack of some cellular components, processes such as phosphorylation, acetylation and glycosylation, called post modification, are often not performed. On the other hand, some changes or forms of protein called protein folding are generally not present in prokaryotic secretions.

Production of transgenic products such as transgenic plants has started in Iran several years ago. However, like all modern sciences, it has its critics. The most important criticisms are related to environmental, ecological issues and changes in the human genome and other species that consume these plants. One of the most important benefits of these species is having pest resistance genes, genes resistant to temperature changes and genes that are effective in accelerating the growth and development of these species, which can continue in the body, although there is no special evidence in this regard.

The use of bioinformatics has a tremendous impact on the progress of recognizing effective therapies, diagnosing some diseases, and producing a variety of pharmaceutical products. With the help of this knowledge, it is possible to estimate which receptors have role in the body communicates more strongly or which receptors are inactivates. Accordingly, the role of a drug can be estimated in the treatment process and also can be evaluated the effect of the drug on cell structure.

Nanoparticle service images

Back to top button